Memetic algorithm using multi-surrogates for computationally expensive optimization problems

نویسندگان

  • Zongzhao Zhou
  • Yew-Soon Ong
  • Meng-Hiot Lim
  • Bu-Sung Lee
چکیده

In this paper, we present a Multi-Surrogates Assisted Memetic Algorithm (MSAMA) for solving optimization problems with computationally expensive fitness functions. The essential backbone of our framework is an evolutionary algorithm coupled with a local search solver that employs multi-surrogates in the spirit of Lamarckian learning. Inspired by the notion of 'blessing and curse of uncertainty' in approximation models, we combine regression and exact interpolating surrogate models in the evolutionary search. Empirical results are presented for a series of commonly used benchmark problems to demonstrate that the proposed framework converges to good solution quality more efficiently than the standard Genetic Algorithm (GA), Memetic Algorithm (MA) and Surrogate-Assisted Memetic Algorithms (SAMAs). 2 Zongzhao Zhou et al.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study on Metamodeling Techniques, Ensembles, and Multi-Surrogates in Surrogate-Assisted Memetic Algorithms

Surrogate-Assisted Memetic Algorithm(SAMA) is a hybrid evolutionary algorithm, particularly a memetic algorithm that employs surrogate models in the optimization search. Since most of the objective function evaluations in SAMA are approximated, the search performance of SAMA is likely to be affected by the characteristics of the models used. In this paper, we study the search performance of usi...

متن کامل

Evolution by Adapting Surrogates

To deal with complex optimization problems plagued with computationally expensive fitness functions, the use of surrogates to replace the original functions within the evolutionary framework is becoming a common practice. However, the appropriate datacentric approximation methodology to use for the construction of surrogate model would depend largely on the nature of the problem of interest, wh...

متن کامل

MMDT: Multi-Objective Memetic Rule Learning from Decision Tree

In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...

متن کامل

An approach to Improve Particle Swarm Optimization Algorithm Using CUDA

The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...

متن کامل

INTRODUCTION AND DEVELOPMENT OF SURROGATE MANAGEMENT FRAMEWORK FOR SOLVING OPTIMIZATION PROBLEMS

In this paper, we have outlined the surrogate management framework for optimization of expensive functions. An initial simple iterative method which we call the “Strawman” method illustrates how surrogates can be incorporated into optimization to stand in for the most expensive function. These ideas are made rigorous by incorporating them into the framework of pattern search methods. The SMF al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Soft Comput.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2007